VMware Tanzu Greenplum An Introduction

May 2020

dential | ©2020 VMware, Inc.

Future Looking Statements Disclaimer

- Presentations may contain product features or functionality that are currently under development.
- •This overview of new technology represents no commitment from VMware to deliver these features in any generally available product.
- •Features are subject to change, and must not be included in contracts, purchase orders, or sales agreements of any kind.
- •Technical feasibility and market demand will affect final delivery.
- •Pricing and packaging for any new features/functionality/technology discussed or presented, have not been determined.
- •This information is confidential.

Greenplum Keynote

Confidential | ©2020 VMware, Inc.

Greenplum is the platform that can power your analytics needs now and, in the future. Let us show you how.

The Greenplum Analytics Platform

Historic Traditional Data Warehouse Process

Use Cases for Analytics Have Expanded Dramatically

MWare[®]

Confidential | ©2020 VMware, Inc.

Today's Data Architect can be Easily Overwhelmed

BIG DATA LANDSCAPE

V3 - Lest updated 5/3/2017

© Matt Turck (Brnattturck), Jim Hao (Bjimrhao), & FirstMark (Bfirstmarkcap) mattturck.com/bigdata2017

FIRSTMARK

Mware[®]

Redefining The Data Platform

Simplify for Efficiency and Cost Savings

Analyze Across Any New Dimensions

With Greenplum you can have a manageable single solution

Enhanced PostgreSQL

Massively Parallel Database

Massive compute grid

Federated Query Database

A Structured and Semi-Structured Platform leveraging ANSI-SQL

Graph, Geospatial, Time Series and Image recognition

Greenplum Integrated Analytics

Confidential | ©2020 VMware, Inc.

Infrastructure Advances Accelerating Data & Compute Architectures Becoming More Powerful

Data Center Revolution

Consolidation of data center's provides unprecedented economies of scale

Industry Standards

x86 Arch, Linux OS, Kubernetes, Ethernet, TCP/IP and SQL provide today's fabric for data computing

New Workloads

Large scale deployments of big data And compute

"Cloud is about how you do computing, not where you do computing."

Paul Maritz, CEO VMWare / Pivotal

vmware[®]

Confidential | ©2020 VMware, Inc

Flexibility in Hybrid Cloud

Answer Real Questions With Greenplum

"Find anyone who <u>works at</u> <u>Pivotal</u> and knows each other <u>directly</u> and whose name <u>sounds</u> like 'Peter' or 'Pavan' and have <u>withdrawn an amount</u> > \$200 <u>within 24 hours</u> at an ATM less than <u>2 KM from a reference</u> latitude and longitude" Find anyone who works at 'Pivotal' and know each other 'directly' and whose names sound like 'Peter' or 'Pavan' and have withdrawn an amount > \$200 within 24 hours at an ATM less than 2 KM from reference latitude and longitude.

```
GPText.search()
CREATE FUNCTION get people(person1 text, person2 text, amount int, duration int, longit float, latitude float) RETURNS int
                                                                                                                              function is used to
AS $$
                                                         Greenplum Fuzzy String Match function
declare
                                                                                                                             know if both people
                                                     Soundex() to know if people name sounds like
linkchk integer; v1 record; v2 record;
                                                                                                                               work at 'Pivotal'
begin
                                                                     'Pavan' or 'Peter'
execute 'truncate table results;';
for v1 in select distinct a, id, a.firstname, a.lastname, amount, tran date, c.lat, c.lng, address, a.description, d.score from people a, transactions b, location c,
   (SELECT w.id, q.score FROM people w, gptext.search('gpadmin.public.people', 'Pivotal') q
    WHERE (q.id::integer) = w.id order by 2 desc) d
    where soundex(firstname)=soundex($1) and a.id=b.id and amount > $3 and (extract(epoch/from tran date) - extract(epoch from now()))/3600 < $4
and st distance sphere(st makepoint($5, $6), st makepoint(c.lng, c.lat))/1000.0 <= 2.0 and b.locid=c.locid and a.id=d.id
loop
  for v2 in select distinct a.id, a.firstname, a.lastname, amount, tram date, c.lat, c.lng, address, a.description, d.score from people a, transactions b, location c,
   (SELECT w.id, q.score FROM people w, gptext.search (TAGHAGEHAET 1 SCATTER BY 1), 'gpadmin.public.people', 'Pivotal', null) q
    WHERE (q.id::integer) = w.id order by 2 desc) d
    where soundex(firstname)=soundex($2) and a.id=b.id and $2001
                                                                   $3 and (extract(epoch from tran date) - extract(epoch from now()))/3600 < $4
   and st_distance_sphere(st_makepoint($5, $6), st_makepoint(c.lng, c.lat))/1000.0 <= 2.0 and b.locid=c.locid and a.id=d.id
loop
    execute 'DROP TABLE IF EXISTS out, out summary;';
    execute 'SELECT madlib.graph_bfs(''people'',''id'',''links'', v1.id,''out'');';
    select 1 into linkchk from out where dist=1 and id=v2>id:
    if linkchk is not null then
         insert into results values (v1.id,v1.firstname,v1.lastname,v1.amount,v1.tran date,v1.lat,v1.lng,v1.address,v1.description,v1.score);
         insert into results values (v2.id,v2.firstname,v2.lastname,v2.amount,v2.tran_date,v2.lat,v2.lng,v2.address,v2.description,v2.score);
                                                                                                                     Greenplum POSTGIS functions
     end if:
                                      Greenplum and Apache MADlib
                                                                                  Greenplum Time functions
   end loop;
                                                                                                                        st_distance_sphere() and
                                      BFS search to know if there are
                                                                                   to calculate difference in
end loop;
                                                                                                                        st_makepoint() calculate
return 0;
                                      direct or indirect links between
                                                                                  amount withdrawn time <
end
                                                                                                                          distance between ATM
                                                    people
                                                                                            24 hours
$$ LANGUAGE plpgsql;
                                                                                                                          location and reference
-- Call the function now
                                                                                                                        latitude, longitude < 2 KM
select get people('Pavan','Peter',200,24,103.912680, 1.309432);
   vmware<sup>®</sup>
                       Confidential | ©2020 VMware, Inc.
```

Coding Productivity Gain 100x vs Competition

Using Greenplum: 1 step, 1 query - 34 Lines of Code

One query – using built-in functions: Soundex (sounds like), NLP (work at same company), Machine Learning MADlib (know directly), Time (yesterday), PostGIS (within 2km)

Greenplum Product Overview

Confidential | ©2020 VMware, Inc.

Greenplum Data Sheet Analytics Data Platform

Enhanced PostgreSQL for Analytical Workloads

ANSI standard SQL, ACID RDBMS, Optimized for Analytics and Big Data Storage & Processing

Massively Parallel Shared Nothing Database

Scale out horizontally from to hundreds of instances or servers

Streaming and Real-time Data Processing

Greenplum Streaming Server connects to Apache Kafka and has an extensible API supporting continual streaming ingestion

Federated Query Processing

S3, HDFS, Hive, Oracle, Parquet, AVRO, JSON and other systems and file formats accessible via Greenplum for query Processing

Hybrid Analytical and Transactions Processing

Simultaneous thousands of Update and Delete transactions per second, Dashboard index lookups and heavy analytics and reporting

Advanced Analytics Beyond OLAP

Machine learning, Deep Learning with GPUs, Time Series, Geospatial and Graph analytics all in the database.

Python, R, Java, Perl, C

User Defined Functions in popular programming languages programmatically modify and transform data. Import libraries in these languages

Enterprise Search Platform

Embedded parallel Apache Solr engines enabled full text indexing and search

Deploy Workloads on Any Infrastructure

One Analytics Data Platform Anywhere

Greenplum on Cloud Elastic Capacity in Public Cloud

Automated Single Click Deploy

Deploy an optimized configuration to the public cloud through a wizard interface

Self Healing Cloud Infrastructure

Machines fail, and when they do Greenplum will automatically reallocate and leverage new cloud instances to replace failed ones

Database Snapshots

Database snapshots can be taken and replicated in the public cloud while users are connected to Greenplum and running workloads

Performance & Horizontal Scale

Bare metal equivalent performance and ability to scale out to larger clusters with cloud provisioned instances

Confidential | ©2020 VMware, Inc.

Autonomous Database Operations

Greenplum Building Blocks Greenplum Reference Configuration Based on Dell

Optimized Configuration for Greenplum

Greenplum and Dell partner to select the ideal configuration for performance, usability and availability.

Simple & Flexible Blocks Design

Choose between compute, storage, or balanced block types and combine together into a single or multi-rack system that is easily expandable

2020 Dell Tech Components

Leverage NVMe Storage, 40 gig networking, Terabyte RAM, up to 192 cores per host, and multiple dedicated network channels for maximum performance

schemas and introspect document structures during query processing Text, Image, Video

Extensible Data Types

Run Greenplum on any Data

Store rich "unstructured" data in tables perform search and deep

Store documents with flexible

learning recognition on these types

Network Traffic, IoT, Logs

Ip Addresses, Ranges of Addresses, Packet Captures, System Logs, and IoT sensors stored and analyzed

Geo & Graph

JSON & XML

Locations and relationships can be stored and natively analyzed

Extensible User Defined Data Types and Custom Processing Per Type

Data is Stored Everywhere Greenplum Federated Query

Federated Query Processing

PXF extensible design can query external data in multiple formats and locations

Massively Parallel External Data Access

Each segment scans external data sources in parallel for Terabyte & Petabyte scale external tables

Smart Processing

Optimizer and query processing engine can push down filters and project column selection to remote system for minimized data transfers over the network

Multi-Temperature Data Storage

Greenplum Federated Query

Vertical Partitioning

Large fact tables divided into time ranges for efficient data access and retention policies

Polymorphic Partitioning

Different ranges in partitioned table can use different storage parameters and mediums

Optimizer Partition Elimination

Query processing will automatically only scan the storage mediums that contain data needed based on query conditions

Indices Row Store

Column

Store

Temperature

HOT DATA

WARM

DATA

- Storage based on operational requirements
- Can I work with data created few second ago ?
- Can I run a report on data from few days ago ?
- Can I inspect the data archived months or years ago ?

MPP Shared Nothing Architecture

Performance Through Parallelism

Master Host connects with users and coordinates work with Segment Hosts

Segment Host Manages Data and Processes Queries

Segment Hosts have their own CPU, disk and memory (shared nothing)

High speed interconnect for continuous pipelining of data processing

Parallel Query Optimizer ORCA

Cost-based optimization looks for the most efficient query execution plan

Query execution plan composed of "slices" for scans, joins, sorts, aggregations, etc

Slices are performed in parallel across segment instances

Motion operators for inter-segment communication

Dynamic Pipelining High speed interconnect

A supercomputing-based "soft-switch" responsible for

- Efficiently pumping streams of data between motion nodes during query-plan execution
- Delivers messages, moves data, collects results, and coordinates work among the segments in the system
- UDP or TCP Intersegment interconnect protocol

High Availability

Master View

2 copies of each segment data

Automatic mirroring

Automatic failover when hardware fails

Proven in production over decade of runtime

Segment View

master host

global

catalog

Greenplum Master

Hybrid Transactional and Analytical Processing Mixed Workloads for Analytics

Workload Management

Define resource groups to ensure allocation of allotted resource for each important workload

High Concurrency Analytics

Hundreds of parallel complex queries run in parallel

Index Lookups

100,000 plus index lookups per second for targeted queries

Updates and Deletes

Thousands of concurrent updates and deletes on the same table enabled by row locking and low overhead distributed transactions

Simple Interface to Advanced Functions Powered by Apache Madlib

Train (build a predictive model)

ELECT madlib.linregr_train(<pre>'houses', Historical prices 'houses_linregr_bedroom', Output model table 'price', Variable to predict 'ARRAY[1, tax, bath, size]', Features 'bedroom' Diff models by #bedrooms;</pre>
-----------------------------	--

Predict (use model on new data)

<pre>SELECT houses_test.*,</pre>	
<pre>madlib.linregr_predict(model.coef,</pre>	—— Trained model
ARRAY[1,tax,bath,size]	Features
) as predicted_price	
<pre>FROM houses_test, houses_linregr_bedroom as models</pre>	
WHERE houses_test.bedroom = model.bedroom;	

Simple Interface to Advanced Functions

Powered by Apache Madlib

						model
id	tax	bedroom	bath	size	lot	predicted_price
1	590	2	1	770	22100	43223.5393423991
2	1050	3	2	1410	12000	111527.609949684
3	20	3	1	1060	3500	20187.9052986334
4	870	2	2	1300	17500	99354.9203362624
5	1320	3	2	1500	30000	124508.080626413
6	1350	2	1	820	25700	96640.8258367596
7	2790	3	2.5	2130	25000	224650.799707329
8	680	2	1	1170	22000	138458.174652714
9	1840	3	2	1500	19000	138650.335313723
10	3680	4	2	2790	20000	240000
11	1660	3	1	1030	17500	62911.27521866
12	1620	3	2	1250	20000	117007.693446415
13	3100	3	2	1760	38000	189203.861766405
14	2070	2	3	1550	14000	143322.539831872
15	650	3	1.5	1450	12000	82452.4386727394
etc.						

From house pricing model

Supervised Learning

- Neural Networks Support Vector Machines (SVM) Conditional Random Field (CRF) Regression Models
- Clustered Variance
- Cox-Proportional Hazards Regression
- Elastic Net Regularization
- Generalized Linear Models
- Linear Regression
- Logistic Regression
- Marginal Effects
- Multinomial Regression
- Naïve Bayes
- Ordinal Regression
- Robust Variance

Tree Methods

Decision Tree and Random Forest

Unsupervised Learning

Association Rules (Apriori) Clustering (k-Means) Principal Component Analysis (PCA) Topic Modelling (Latent Dirichlet Allocation)

Deep Learning

Keras Fit/Evaluate/Predict Load Model Architectures Preprocessor for Images Parallel Image Loading

Graph

All Pairs Shortest Path (APSP) Breadth-First Search Hyperlink-Induced Topic Search (HITS) Average Path Length Closeness Centrality Graph Diameter In-Out Degree PageRank and Personalized PageRank Single Source Shortest Path (SSSP) Weakly Connected Components

Nearest Neighbors

k-Nearest Neighbors

Time Series Analysis

ARIMA

Sampling Balanced Random

Stratified

Statistics

Descriptive Statistics

- Cardinality Estimators
- Correlation and Covariance
- Summary

Inferential Statistics - Hypothesis Tests Probability Functions

Data Types and Transformations Array and Matrix Operations Matrix Factorization

- Low Rank
- Singular Value Decomposition (SVD)
 Norms and Distance Functions
 Sparse Vectors
 Encoding Categorical Variables
 Path Functions
 Pivot
 Sessionize
 Stemming

Utility Functions

Columns to Vector Conjugate Gradient Linear Solvers • Dense Linear Systems • Sparse Linear Systems Mini-Batching PMML Export Term Frequency for Text

Vector to Columns

Model Selection

Cross Validation Prediction Metrics Train-Test Split Graph Analytics Terabyte and Petabyte Scale Analysis of Graphs

Graph Algorithms and Measures

	Types	Question	Features
Graph-based	1 Group	"What are the sub-graphs, component, communities?"	weakly-connected component
	² Structure	"What is the character of the network structure?"	Density, Diameter, Average path length, Modularity
Features	³ Path	"What is the shortest path (distance) among vertices?"	Single source shortest path, All pairs shortest path, Breadth-First Search
	⁴ Centrality	"What are the most important vertices within a graph?"	Degree (in/out, weight), Closeness, PageRank, Hub, Authority, Betweenness,

MMO Role-Playing Game Normal Strategy Strategy

* www.researchgate.net

Clustering coefficient

Confidential | ©2020 VMware, Inc.

Deep Learning in our Super Computing Grid GPU Accelerated

Train Neural Networks

Use unstructured data like images and text and have Greenplum train models to recognize patterns for identification

MPP Scale Performance

Train and compare thousands of models using the compute grid of Greenplum

Tensor Flow, Keras, GPUs

Industry standard libraries are used under the hood, complexity is managed for users by Greenplum


```
SELECT madlib_keras_fit('cifar10_train',
                                                          -- training dataset
                                                           -- trained model weights
                        'cifar10_model',
                                                           -- model architecture table
                        'model_arch_library',
                                                           -- model architecture id
                         $$ loss='categorical crossentropy', optimizer='adam',
                            metrics=['accuracy'] $$,
                                                          -- compile parameters
                         $$ batch_size=32, epochs=3 $$,
                                                          -- fit parameters
                         20,
                                                           -- number iterations
                                                          -- GPUs per host
                         4.
                        'cifar10 test'
                                                          -- test/validation dataset
                        );
```

GeoSpatial Analytics Storage and Query of Geo Data

Turn your big data database in a Geo

database to store, search and analyze

data based on locations

Text Search & Analytics

Index and find matching documents

•Extract data from binary or human readable formats into data that a machine can understand and operate on.

•Index the text data, so we can quickly search for specific text and documents.

•Search the text for patterns and keywords.

•Analyze what the text actually means.

Greenplum R Server Side Compute Grid

Test Locally and Execute Remotely

Massively Parallel Execution of R Functions on thousands of CPU Cores

Secure Execution on Server Side & Security of Data Living Greenplum (not local data)

Dynamic push of function code, no UDF writing needed

No data here

Push code to server

Procedural Programming Languages Custom User Defined Functions

Server-Side Functions

- Process data row by row
- Massively parallel execution model
- Transform each row using a procedural language
- Security via containerized execution when needed
- Import OSS libraries for advanced functions (e.g. NLTK)
- Import enterprise libraries for acess to your proprietary code logic
- User defined aggregates for grouping
- Call OSS Machine Learning algorithms

Greenplum Command Center

Single Pane of Glass for Greenplum Database Administrators

Greenplum Command Center Alerts and Table Browser

Table Brov	VSEC View Greenplum tables and	f details						C 2019-12	ument Time -03 16:45:06		
Database gpadmin	Owner V All	Schema tpcds	Size 2	v 0	68	- SEARCH					
24 Tables for	und in gpadmin								\sim 1 \rightarrow		
Schema	Relation Name	Partitions	Size	Owner	Est. Rows	Last Analyzed	Last Vacuumed	Last Accessed	Storage		
tools	call_center	-	1.10 MB	gradmin	10	2019-12-03 10:47:13	2019-12-03 11:11:52	2019-12-03 13 28 20	A0/C0		
tpcds	catalog_page	-	2.42 MB	gpadmin	11718	2019-12-03 10:47:13	2019-12-03 11:12:02	2019-12-03 13:23:16	A0/C0		
tpcds	catalog_returns	275	306.70 MB	gpadmin	432000	2019-12-03 10:47:16	2019-12-03 11:17:31	2019-12-03 13:38:29	A0/C0		
tpols	catalog_sales	80	454.15 MB	gradmin	4319367	2019-12-03 10:46:54	2019-12-03 11:17:31	2019-12-03 11:28:20	A0/C0		
tpcds	customer	-	21.42 MB	gpadmin	188000	2019-12-03 10:46:09	2019-12-03 11:14:54	2019-12-03 11:28:20	A0/CO		
tpcds	customer_address	-	10.84 MB	gpadmin	94000	2019-12-03 10:46:11	2019-12-03 11:14:55	2019-12-03 11:28:20	A0/C0		
tpols	customer_demographics		79.02 MB	gradmin	1920800	2019-12-03 10:46:07	2019-12-03 11:14:55	2019-12-03 13:38:29	A0/C0	Alerts	Manad
tpols	date_dim		9.04 MB	gradmin	73049	2019-12-03 10:46:08	2019-12-03 11:14:55	Alerts Events	1070	/	
tpcds	household_demographics	-	1.11 MB	gpadmin	7200	2019-12-03 10:46:02	2019-12-03 11:14:55	Receive email aler	ts for selected events:		
tpods	income_band	-	960.70 KB	gpadmin	20	2019-12-03 10:46:02	2013-12-03 11:14:56	a Outabase connect	ivity failure		Out of memory errors
tpofs	inventory	23	269.39 MB	gradmin	28188000	2019-12-03 10:46:05	2019-12-03 11:17:31	Segment failure			Spill files for a query exceeds
								Average memory	segment hosts) exceeds	65 % for 30 min	Query runtime exceeds

CPU (master) exceeds

Alerts Management

ement

Receive email alerts for selected events:		
Outabase connectivity failure		Out of memory errors
Segment failure		Spill files for a query exceeds 250 GB
Average memory (segment hosts) exceeds	65 % for 20 min	Query runtime exceeds min
Memory (master) exceeds % for	min	Query is blocked for 15 min
Total disk space exceeds % full		PANOC happened on Master host.
Number of connections exceeds 5		FATAL happened on Master host
Average CPU (segment hosts) exceeds	% for min	
CPU (master) exceeds % for	min	

CANCEL SAVE

Gartner Loves Greenplum

Ranked Number 1 Open Source Data Warehouse in the World!

Analysis

Critical Capabilities Use-Case Graphics

Figure 1. Vendors' Product Scores for Traditional Data Warehouse Use Case

Product or Service Scores for Traditional Data Warehouse

Teradata			3	1.73
Oracle (Oracle Exadata)			3.5	4
Pivotal (Pivotal Greenplum)			3.4	9
SAP (SAP HANA)			3.35	
Google (BigQuery)			3.27	
Micro Focus (Vertica)			3.26	
GBase (GBase 8a)			3.23	
IBM (Db2)			3.22	
Snowflake			3.22	
Amazon Web Services (Amazon Redshift)			3.16	
Microsoft (Azure SQL Data Warehouse)			3.15	
Alibaba Cloud (MaxCompute)			3.08	
Huawei (FusionInsight Big Data)			3.03	
MarkLogic			3.01	
MapR Technologies (MapR Data Platform)			2.92	
Hortonworks (Hortonworks Data Platform))		2.81	
Cloudera (Cloudera Enterprise)			2.79	
Arm Treasure Data			2.78	
Neo4j		2	2.76	
	1	2	3	4
As of 21 January 2019				© Gartner

Source: Gartner (March 2019)

5 Inc

VMware Tanzu Greenplum Roadmap April 2020

Confidential | ©2020 VMware, Inc.

Future Looking Statements Disclaimer

- Presentations may contain product features or functionality that are currently under development.
- •This overview of new technology represents no commitment from VMware to deliver these features in any generally available product.
- •Features are subject to change, and must not be included in contracts, purchase orders, or sales agreements of any kind.
- •Technical feasibility and market demand will affect final delivery.
- •Pricing and packaging for any new features/functionality/technology discussed or presented, have not been determined.
- •This information is confidential.

VmWare Tanzu Greenplum Roadmap Contents of Presentation

- 1. Greenplum Platform Next Generation
- 2. DBA Operational Improvements
- 3. ETL and Data Integration Improvements
- 4. Analytics & Data Science Enhancements
- 5. Server Feature Release & Support Calendar

Introducing VMware Tanzu Greenplum

Confidential | ©2020 VMware, Inc.

Greenplum Platform Roadmap

Expand on Greenplum's traditional strength on bare metal with VMware's virtualization expertise

Off Platform	Virtualized	Containerized
 Bare Metal Public Cloud 	 Vsphere VxRail 	 Kubernetes VMware Cloud Foundation

Greenplum on vSphere

Testing and certification of vSphere platform

- Greenplum has been supported on vSphere for over 5 years
- Used heavily in test & dev scenarios
- Used in small to medium production scenarios

We can do more!

- Targeting large production clusters
- VMware Ready Node specification certifications
- Optimal configuration options documented
- Monitoring, troubleshooting and tuning guides
- VM deployment automation

Greenplum For Kubernetes Value Proposition

Advantages of containerization

Greenplum Building Blocks on VxRail

Next gen platform appliance available for Greenplum

- 2010: EMC DCA v1, 2012 EMC DCA, 2016 EMC DCA V3, 2018 Dell Building Blocks
- 2020: Greenplum VxRail Building Blocks
- Software defined architecture consolidates compute, storage, virtualization, and management
- Smart Fabric Services for VxRail automates network setup, simplifying and accelerating deployment
- Provides a single point of support by default for all software and hardware
- Integrated vSan Storage provides mirroring at storage level not DB segment level
- VxRail tech specs per host:

56 Cores, 1.5 TB RAM, 76 TB All Flash Storage, Write Caching 2x25 gb network for interconnect, 2x25 gb network for vSan storage

Greenplum DBA Operational Improvements

Multi Site Replication

- WAL streaming across two data centers
- Read-only live mirror cluster
- Allow for user defined, consistent Restore Points across all segments
- Supports failover and failback
- Maximum data availability

Point In Time Recovery

- WAL archiving on existing storage (Data Domain, S3, etc)
- A secondary Greenplum cluster is initialized, and Recovered up to an existing, defined Restore Point
- May be used to recover specific objects on a specific date
- May be used to seed Dev/QA databases

Greenplum Command Center Greenplum Roadmap

Autonomous Database Features

Recommendation engine for key tasks like vacuum and analyze

In-App notifications for alerts in the dashboard

Solutions for More Scenarios

Plugin framework to create custom screens in GPCC New plugins for:

- * Greenplum Text
- * PXF
- * Streaming Server
- * Kafka
- * GP Backup Manager
- * Greenplum For Kubernetes

Greenplum Database Server Release Calendar and Roadmap

Greenplum Releases Greenplum Roadmap

Greenplum 4.3

Initial release: March 2015 Current Status: Maintenance Mode End of General Support: Nov 30, 2020

Greenplum 5.X

Initial release: Sep 2017 Current Status: Limited Feature Release End of General Support: TBD, targeted for 18 months from last minor version

Greenplum 6.X

Initial release: Sep 2019 Current Status: Active Development End of General Support: TBD

Greenplum 7.X

Target release beta: March-2021 Target release GA: Sep-2021 GA Current Status: Active Development; Not released yet End of General Support: TBD

Greenplum Component Releases Ongoing

Greenplum Command Center Greenplum Backup Manager Greenplum Streaming Server Greenplum Data Copy Utility Greenplum Text Apache Madlib

Greenplum 7 Server Greenplum 7 Roadmap

Postgres Merge

Greenplum 7 is targeting Postgres 12 Greenplum 6 is based on Postgres 9.4 Greenplum 5 is based on Postgres 8.3

Query Performance

BRIN indices enable tracking of min and max values per block to bypass IO and speed analytical queries (similar to zone maps) and allow for immediate simple answers from your data

Postgres **parallel query execution** for CPU intensive operators enable elastic scaling up and down to meet available CPU resources

Just in Time (JIT) compilation allows rewriting of machine code execution at run-time speed analytical query execution

Query Federation

Statistics on external data allow complex workloads to run directly on external data leveraging optimized query plans

Improved Resource Utilization for PXF

Parallel Scan Operators for PXF

PXF caching to reduce IO to external data sets

Greenplum to Greenplum (GP2GP) foreign data wrapper allows multi-cluster architectures and cross cluster queries with MPP performance

DBA Operations

WAL Named Restore Points to support DR and PITR

Auto-vacuum on the catalog allows GPDB to run optimally with less attention from DBAs

VMWare Tanzu Greenplum Open Source Software Vs Commercial

Apache License V2.0

"Benevolent Dictator"

• VMware is the Steward

Value Proposition

- Added value to OSS
- Best Support

Naming

- Commercial: VMWare Tanzu
 Greenplum
- OSS: Greenplum Database

Available in VMWare Tanzu Greenplum Only

- Product packaging and installation scripts
- Greenplum Command Center
- Greenplum Workload Manager
- Text Analytics (GPText)
- Compression: Support for QuickLZ/ZStd
- Connectors:
 - Apache Spark Connector
 - VMware Tanzu Gemfire Connector
 - Apache Kafka Connector (gpkafka)
 - Apache Nifi Connector (Coming soon)
- Progress ODBC/JDBC drivers
- Premium Support